In Proceedings of the National Conference on Atrtificial Intelligence (AAAI), 2004.

Learning and Inferring Transportation Routines

Lin Liao Dieter Fox Henry Kautz
Department of Computer Science & Engineering
University of Washington
Seattle, WA 98195

Abstract “just in time” information services (for example, provide the
_ . ) _ user with current bus schedule information when she is likely
This paper introduces a hierarchical Markov model that can 4 need it or real time traffic conditions on her future trajec-
Ie_arn and infer a user’s dally movements through_the_commu- tories) and self-configuring appointment calendars.
nity. The model uses multiple levels of abstraction in order . . h
to bridge the gap between raw GPS sensor measurements and Our app_roach is based on an abstract hierarchical Markov
high level information such as a user's mode of transporta- Model (Bui, Venkatesh, & West 2002) of a user from data
tion or her goal. We apply Rao-Blackwellised particle filters ~ collected by a small wearable GPS unit. The model is
for efficient inference both at the low level and at the higher =~ compactly represented by a dynamic Bayesian network, and
levels of the hierarchy. Significant locations such as goals or  inference is efficiently performed using Rao-Blackwellised
locations where the user frequently changes mode of trans-  particle filtering both for the low level sensor integration and
portation are learned from GPS data logs without requiring  for the higher levels of the hierarchical model.
any manual labeling. We show how to detect abnormal be- The main research contribution in this paper is a method
gggb?tifﬁi'ttﬁgT?a;géoann%t:’;)ﬂg?’;%g%‘:”g;‘ggrti?gﬁggsﬂfw for learning hierarchical predictive models of user location
that our model is able to accurately predict the goals of a per- and .tranSportatlon mode In an unsupe.rV|s.ed manner. While
son and to recognize situations in which the user performs un-  Prévious authors described inference in hierarchical models
known activities. (Bui, Venkatesh, & West 2002) and learning flat transporta-
tion models (Pattersoat al. 2003), our work is the first
. to combine the techniques. A second research contribution
Introduction are initial results on inferringser errors and deviations from
The advent of low-cost GPS (global positioning system) routineby model selection. We demonstrate the effectiveness
technology has led to great interest in developing commer-of this approach with an example of the system recognizing
cial applications that take advantage of information about awhen the user has missed his bus stop.
user’s current location — for example, 911 service. Butlo-  This paper is organized as follows. In the next section, we
calization based on immediate sensor data is onIy one smalliscuss related work. Then, we provide an overview of the
part of inferring a user’s spatial context. In this paper we de- activity model, followed by a description of inference and
scribe a system that createprababilistic modebf a user's  |earning mechanisms. Before concluding, we present exper-
daily movements using unsupervised learning from raw GPSimental results that show the capabilities of our approach.
data. The model allows one to:

o Infer the locations of usual goals, such as home or work- Related work

place; _ Over the last years, estimating a person’s activities has
* Infer a user's mode of transportation, such as foot, car, orgained increased interest in the Al, robotics, and ubiquitous
bus, and predict when and where she will change modes; computing communities. (Ashbrook & Starner 2003) learn
o Predict her future movements, both in the short term (will significant locations from logs of GPS measurements by de-
the user turn left at the next street corner?) and in terms oftermining the time a person spends at a certain location. For
distant goals (is she going to her workplace?); these locations, they use frequency counting to estimate the
e Infer when a user hasroken his ordinary routinén a way transition parameters of a second-order Markov model. Their
that may indicate that he has made an error, such as failingapproach then predicts the next goal based on the current and
to get off his bus at his usual stop on the way home; the previous goals. In contrast to our approach, their model
o Robustly track and predict locations even in the presencelS not able to refine the goal estimates using GPS informa-

another. Furthermore, such a coarse representation does not

allow the detection of potential user errors. In our previous
work (Pattersoret al. 2003), we estimate a person’s location
and mode of transportation from GPS measurements using a
“flat” model. Since the model has no notion of significant
Copyright(© 2005, American Association for Artificial Intelligence  locations, it is not able to predict the high-level goal of a per-
(www.aaai.org). All rights reserved. son. By conditioning on goals and segments of a trip, our

A motivating application for this work is the development
of personal guidance systems that help cognitively-impaired
individuals move safely and independently throughout their
community. Other potential applications includestomized



hierarchical model is able to learn more specific motion pat- o @ Goal g
terns of a person, which also enables us to detect user errors ./

In the context of probabilistic plan recognition, (Bui, @
Venkatesh, & West 2002) introduced the abstract hidden
Markov model, which uses hierarchical representations to ef- |
ficiently infer a person’s goal in an indoor environment from
camera information. (Bui 2003) extended this model to in-
clude memory nodes, which enables the transfer of context
information over multiple time steps. Bui and colleagues in-
troduced efficient inference algorithms for their models us-
ing Rao-Blackwellised particle filters. Since our model has
a similar structure to theirs, we apply the inference mecha-
nisms developed in (Bui 2003). Our work goes beyond the
work of Bui et al. in that we show how to learn the struc- Figure 1:Hierarchical activity model representing a person’s out-

ture and the parameters of the hierarchical activity model yoor movements during everyday activities. The upper level esti-
from data. Furthermore, our low level estimation problem a5 the current goal, the middle layer represents segments of a

is more challenging than their indoor tracking problem. In i, ang mode of transportation, and the lowest layer estimates the

the context of mobile robotics, (Cielniak, Bennewitz, & Bur-  herson's location. The dashed line indicates the flat model.

gard 2003) apply a two level model to track and predict the

location of people using a mobile robot equipped with a laseran edge in the graph structure. The edge to which a spe-

range-finder. Their model learns a person’s trajectories usingeific measurement is “snapped” is estimated by the associa-

a mixtures of Gaussians approach. Due to this representatiortjon variabled,.. The location of the person at tintedepends

they are only able to track a person along paths the robot hasn his previous locatiori_;, the motion velocityyy, and

observed during training. Thus, the technique is not able tothe vertex transitionz;. Vertex transitions- model the deci-

track and detect novel behaviors. sion a person makes when moving over a vertex in the graph,
The task of detecting abnormal events in time series datafor example, to turn right when crossing a street intersection.

(called novelty detectionhas been studied extensively in The mode of transportation can take on four different val-

the data-mining community (Guralnik & Srivastava 1999), uesm; € {BUS, FOOT,CAR, BUILDING}. Similar

but remains an open and challenging research problem. Weo (Pattersoret al. 2003), these modes influence the motion

present the first results on abnormality detection in location velocity, which is picked from a Gaussian mixture model.

and transportation prediction using a simple and effective For example, the walking mode draws velocities only from

model selection approach based on comparing the likelihoodthe Gaussian representing slow motidBUILDING is a

of a learned hierarchical model against that of a prior model. special mode that occurs only when the GPS signal is lost for

significantly long time. Finally, the location of the car only
Hierarchical Activity Model changes when the person is in thel R mode, in which the

We estimate a person’s activities using the three level dy-Car location is set to the person’s location.

namic Bayesian network model shown in Fig. 1. The indi- Trip segments A trip segment is defined by its start loca-
vidual nodes in such a temporal graphical model represention, ¢;, end location,t;, and the mode of transportation,
different parts of the state space and the arcs indicate deperfy', the person uses during the segment. For example, a trip
dencies between the nodes (Murphy 2002). Temporal de-segment models information such as “she gets on the bus at
pendencies are represented by arcs connecting the two timiocation; and takes the bus up to locatiofy, where she
slicesk — 1 andk. The highest level of the model, denoted gets off the bus”. In addition to transportation mode, a trip
goal level, represents the person’s next geal, her work segment predicts the route on which the person gets ffom
place. The trip segment level represents the mode of transto ¢f. This route is not specified through a deterministic se-
portation and the locations at which the person transfers fromquence of edges on the graph but rather through transition
one mode to another. The person’s location and motion ve-probabilities on the graph. These probabilities determine the
locity are estimated from the GPS sensor measurements d@rediction of the person’s motion direction when crossing a
the lowest level of the model. vertex in the graph, as indicated by the arc fronto 7.
Locations and transportation modes We denote byt — The transfer between modes and trip segments is handled
(I, vr, cx) the location and motion velocity of the person, DY the switching nodeg and ;, respectively. More specif-
and the location of the person’s cagsubscriptsk indicate ically, the binary trip switching node is set to true whenever
discrete time). As we will describe in the next section, loca- € person reaches the end locatipof the current trip seg-
tions are estimated on a graph structure representing a stre€f€nt. In this case, the trip segment is allowed to switch with
map. GPS sensor measuremenis, are generated by the the constraint that the start location of the next segment is
person carrying a GPS sensor. Since measurements are givafiéntical to the end location of the current segment. The next

in continuouszy-coordinates, they have to be “snapped” to trip segment is chosen according to Fhe segment tran_sition
of the current goag;,. Once the next trip segment is active,

We include the car location because it strongly affects whetherthe person still has to change mode of transportation. This
the person can switch to the car mode. does not happen instantaneously, since, for example, a per-

Goal switching f9

Trip segment t = <t*,t%t™>

Transportation mode m
Mode switching counter f™

Edge transition T

Location and velocity, and
car location: x = <l,v,c>

Data (edge) association 6
GPS reading z




son has to wait for the bus even though he already reached thparticle filter and then estimating the person’s location and
bus stop (and thus entered the bus trip segment). This semimotion velocity using Kalman filters conditioned on the sam-
Markov property of delayed mode switching is modeled by ples. More specifically, RBPFs represent posteriors by sets
the nodef;", which is a counter that measures the time stepsof weighted samples, or particles:

until the next transportation mode is entered. The counter is _ g (@) -

initialized by the next trip segment, then decremented until it _ Sk={siwp [1=i< N} _

reaches a value of zero, which triggers the mode switch. Eachs,(j) = (@, 25,9, my, f,z."(i)7 fﬁ(l)a A MON
Goals A goal represents the current target location of the where the person’s location and velocity are represented
person. Goals include locations such as the person’s homeby (), Ek<">>, the mean and covariance of the Kalman
work place, the grocery store, and locations of friends. Theséfilter, which represents posteriors by Gaussian approxima-
goals are also contained in the trip segment level. Thus, thetions (Bar-Shalom, Li, & Kirubarajan 2001). The other com-
goal of the person can only change when the person reachegonents of the patrticle are instances of the discrete parts of
the end of a trip segment. The goal switching ngflés true the state space. At each time step, RBPFs first sample the
only when the trip switching nodg¢ is true and the end of  discrete components from the posterior at the previous time
the current trip segmery; is identical to the goajy. If the k — 1. This can be done stepwise by simulating (1) from
goal switches, the next goal is chosen according to a learnedight to left, using the independence represented in the activ-

goal transition model. ity model (see Fig. 1). Then, the continuous part is updated
analytically using Kalman filters.
Inference, Learning, and Error Detection The discrete variables are sampled as follows. The value
Inference of the trip switching nodgt‘,ﬁ(” is sampled conditioned on the

The independence structure of our hierarchical activity Prévious location of the person_;. For Z_e)xfalmple, when-
model allows us to use efficient inference developed for ab-ever the person approaches a bus SDE,Z}S is set to true
stract hidden Markov memory models (Bui 2003). This tech- with a small probability. If t@) _ T then the value of

nigue relies on Rao-Blackwellised particle filters, where the the mode switching countgfr,g’li(i) is initialized to the wait-

states at the lowest level are estimated using particle filters, . . (i)
and higher levels are solved analytically conditioned on the 'Nd time. Otherwise, the value g§***’ is decremented, and

low level particles. For brevity, we focus on the task of esti- When it reaches zero, the new transportation magé) is
mating a person’s location and mode of transportation usingsampled according to the mode transition probability; oth-
GPS measurements. Inference at higher levels will only beerwise, m;,() = my,_,). The value of the edge transi-
outlined, since it is very similar to (Bui 2003). tion variabler, determines, for example, whether the person

GPS-based tracking on street maps Our previous MoVves straight or turns right at the next intersectign?) is

work (Pattersoret al. 2003) uses a “flat” model for loca- Sampled based on the previous position of the person and a
tion and transportation mode estimation. Such a model islearned transition model. Finally, the edge association vari-
obtained by removing the nodes /9, andt from the activ- abled), “snaps” the GPS reading to a street in the map. This
|ty model shown in F|g 1, as indicated by the dotted line. In Step IS CI’UCIal for the Kalman filter Update described below.
that model, we estimate a person’s location on a street maglo samplee(f), we first determine the distance between the
represented by a graph-structdte= (V, E), whereV is the measurement;,, and the different streets in the vicinity. The
set of verticesy;, and F is the set of edges,;. Typically, probability of “snapping”z; to one of these streets is then
vertices are intersections and the length of edges correspondsomputed from this distance.

to city blocks. The person can switch mode of transportation At this step of the algorithm, we can assume that all
whenever she is near her car or a bus stop. While our prediscrete values of a sample are already generated, that is,
vious work uses particle filters for inference, we now rely () _ (-, mp @, (@, fé(i),ek(i)77.k(i)>' The RBPF now

on a more efficient Rao-Blackwellised solution to the prob-
lem (Doucetet al. 2000), which is based on the following
factorization of the posterior:

generates the missing valués, ), .Y} by updating the
Kalman filter conditioned on the already sampled values. To
( g | ) see, let us rewrite the left term on the right hand side of (1):
P\ Tk, Mk, Jigs Ji »Vky Tk | 21:k) = i m(i (i i i i
Dl £, 0 O 7o 21) D £ S0 mler)®) P Lm0 RD 0010 200 o plafe.6,7)
The posterior at timé is conditioned o, the sequence /p(azklmg), 7D 2 ) pael? | [z1k1) del” | (2)
of GPS measurements observed so far. The factorization (1) ) ]
separates the state space of our estimation problem into it§2) follows by applying Bayes rule and the independences
continuous and discrete parts. The continuous part reprein our estimation problem. It represents the standard re-
sents the location and motion velocity of the person,and  cursive Bayes filter update rule; see (Bar-Shalom, Li, &
the discrete part represents the remaining quantities includKirubarajan 2001) for details. The prior probability is given
ing transportation modmk’ edge associatio&k, edge tran- by the Gaussian Of the pre_V|0uleaIman f|lter estimate:
sition 75, and switching nodeg™ and f}. p(@ [z1m1) = N 5”59 ). The Kalman fil-
Rao-Blackwellised particle filters (RBPF) estimate this ter implements the update rule (2) by two stepprediction
factorized posterior by sampling the discrete states using astepfollowed by acorrection step



€1 filtering, and compute importance Weigbf).

2. Do re-sampling according to the importance weights.

3. For each particle, perform one-step exact inference to up-
date the distribution of goals.”’ and trip segments”.

|
|
/
& &% o - : e -
, | 6=€, e, The first step is extremely similar to the flat model described
in the previous section. The main difference lies in the fact

Figure 2:Kalman filter update and data association: The person is that the transportation mOdﬁS), the trip SW'tChmgfk(l),
located on edge;. The continuous coordinates of the GPS mea- and the edge transitionél) are sampledonditionedon the
surementzy, are between edges ande:. Depending onthe value  estimates of the high level goal and trip segment. Thereby,

of the edge associatiod, the correction step moves the estimate the sampling is adjusted to the current high level information.
up-wards or down-wards.

N it 6=¢, | 0=e;

Learning

filtlenr H;)% gtree ?slcrflrggiztgglut:iﬁ gdt'ﬁteagf :V;gi\;e\i(;?oi;g/cgstt?rﬁ;?es'tl_earn|ng of the hierarchical model includes two procedures:
. () (i) i ‘structural Iearnm.g and parameter Iearnlng, both are com-
The prediction,(4;”, X3;), results then from shifting and  petely unsupervised. Structural learning searches for the
convolving the previous estimate by the predicted motion, significant locationsi.e., usual goals and mode transfer lo-
thereby implementing the integration in (2). This prediction cations, from GPS logs collected over an extended period of
step is straightforward !f the person stays on the same edge Ofime. To do that, we apply expectation maximization (EM)
the graph. If she transits over a vertex of the graph, then theysing the “flat” activity model described above (called flat
edge is given by the already sampled edge transitj&n. EM). When it finishes, the structure of the model is deter-
In the correction step, the predicted estim@lé”, 2,&% mined. EM is then used to estimate the transition probabili-
is corrected based on the most recent GPS measureggent, ties in the hierarchical model (called hierarchical EM).
Intuitively, this correction compares the predicted mﬁ%ﬁ Finding goals We consider goal locations to be those lo-
with the location ofz;, and shifts the mean toward the mea- cations where a person typically spends extended periods of
surement (under consideration of the uncertainties). The cortime. (Ashbrook & Starner 2003) extract significant loca-
rection step is illustrated in Fig. 2. The predicted location is tions by detecting places where the GPS signal is lost. The
on edgees, and the GPS sensor reports a measurement, disadvantage of such an approach is that it can only detect
between edges; ande;. Depending on whether;, origi- indoor goals. To overcome this problem, we store for each
nates frome; or e,, the predicted estimate is corrected either edge on the graph how long the person stays on this edge,
up-wards or down-wardsThe already sampled value of the estimated during the flat EM. Since we model loss of GPS
edge association variabe” uniquely determines to which ~ Signal by transiting into a “BUILDING” mode, our model
edge the reading is “snapped” (see previous paragraph). ~ €an thus detect both indoor and outdoor goals. Once sig-
After all components of each particle are generated, thenificant edges are detected, they are clustered by combining
importance weights of the particles are updated. This is done®dges that are connected or very close.
by computing the likelihood of the GPS measurement Finding mode transfer locations The mode transition
which is provided by the update innovations of the Kalman probabilities for each street are estimated during the flat EM.
filters (Doucetet al. 2000). Even before learning, knowledge about the bus stops and the
Goal and trip segment estimation So far, we concen- fact that the car is either parked or moves with the person,
trated on the estimation in a flat model. To further esti- already provides important constraints on mode transitions.
mate a person’s goal and trip segment, we apply the infer-In the E-step, both a forward and a backward filtering pass
ence algorithm used for the abstract hidden Markov mem-are performed and the transition counts of the two passes are
ory models (Bui 2003). More specifically, we use a Rao- combined. Then in the M-step, the parameters are updated
Blackwellised particle filter both at the low level and at the Pased on the counts. The mode transfer locations for a user,
higher levels. Each sample of the resulting particle filter con- I-€. usual bus stops and parking lots, are then those locations
tains the discrete and continuous states described in the preat Which the mode switching exceeds a certain threshold.
vious section, and a joint distribution over the goals and trip Estimating transition matrices Once goals and trip seg-
segments. These additional distributions are updated usingnents are determined, we can extend the flat model by in-
exact inference. To summarize, at each time step, the filter isserting these significant locations into the higher levels of the
updated as follows (see (Bui 2003)): activity model. Then, we can re-use the GPS data in the hier-
1. For each particle, sample the discrete states archical EM to estimate the transition matrices between the
TG e () o) ol () _ ’goals,_between the trip segments given the goz_;tl, and I_oetween
my fie s e s S50k, update the continu- - the adjacent streets given the trip segment. Hierarchical EM
ous state(;tl(;), E}(j)> by performing one-step Kalman is similar to flat EM. During the E-steps, smoothing is per-
formed by tracking the states both forward and backward in
2Alternatively, one could compute the innovationag-space  time. The M-steps update the model parameters using the
and project it onto the graph. However, such an approach can resulfrequency counts generated in the E-step. All transition pa-
in “stuck situations”, for example, in dead ends on the graph. rameters are smoothed using Dirichlet priors.
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Figure 3:(a) Street map along with goals (dots) learned from 30 days of data. Learned trip switching locations are indicated by cross marks.
From home, the person either walks to one of the two bus stops or takes the car, which is not learned as a trip switching location since the car
is parked inside the house. (b) Zoom into the area around the work place. Shown are very likely transitions (probability above 0.75), given
that the goal is the work place (dashed lines indicate car mode, solid lines bus, and dashed-dotted lines foot). (c) Learned transitions in the
same area conditioned on the home being the goal.

Detection of User Errors goals and transfer locations, parameter learning estimates the

If the person always repeats her past activities, activity track-{ransition matrices at all levels of the model. Fig. 3 (b) and
ing can be done with only a small number of particles in the (c) show the learned street transitions given high-level in-
learned model. This is mainly because the model has |0Wformat|on_. The_ model succ_essfully discovered the most fre-
uncertainty in where the person switches modes and goa|squent_ trajectories for traveling from home to the workplace
In reality, however, people often perform novel activities or and vice-versa, as well as other common trips, such as to the
commit some errors. The most straightforward way to model homes of friends. _ _
abnormalities is to add an unknown goal and an unknownEMmpirical comparison to other models The hierarchical
mode transfer location to the learned model, and estimateM0del is very expressive and able to answer many useful
the probability of the unknowns. However, this means the dueries. For example, many applications need to query the
person can change mode and geatrywherebecause any probability of a given goal. Here we compare the.perfor—
place could be an unknown goal or transfer location. This Mance of our hierarchical model to the goal prediction of a
would require a huge number of particles to track correctly. flatmodel (Pattersoet al. 2003) and a second-order Markov

Instead, we use two different trackers simultaneously andmModel between goals (2MM for simplicity) (Ashbrook &
perform model monitoring by computing the Bayes factors Starner 2003). _
between the two models (West & Harrison 1997). The first A flat model only keeps a first-order Markov model over
tracker uses hierarchical inference on the learned model that€ Street blocks. Thus, in order to calculate the probability
models the person’s ordinary routine. The second uses a flapf @ goal, one must calculate the sum over all possible paths
model with theapriori parameter settings; these account for t©0 the goal, which is intractable if the goal is far away. A
general physical constraints but are not adjusted to the in-"éa@sonable approximation is to compute the probability of
dividual's ordinary routines. The trackers are run in paral- the most likely path to the goal. Fig. 4 (a) compares the result
lel, and the probability of each model is calculated from the ©f such a query on the probability of the goal being the work
observation likelihoods of the two models. When the user Place during an episode of traveling from home to work. As
is following her ordinary routine the hierarchical model has ©ne can see, quite early on the hierarchical model assigns a
higher likelinoods, but when the user does something unex-Nigh probability to the true goal, while the estimate from the
pected the general flat model becomes more likely. flat model is meaningless until the user is near the goal.

Both trackers can be run very efficiently. The hierarchical VO accuracy at aven time
tracker has “expensive” particles, each containing much state Model b 9. 25&/ 5900/ 7507
information, but requires few particles for accurate tracking. ode eginning | 0 | dl 0
The flat, untrained tracker needs more particles to maintain | 2MM 069 | 0.69] 0.69] 0.69
tracking, but each particle is cheaper to compute. Further- | Hierarchical model  0.66 0.75] 0.82] 0.98
more, calculating the likelihood of a model introduces no ex-  Table 1:Goal predictions using 2MM and hierarchical model
tra expense, because the value already needs to be computed
as part of importance weighting.

The 2MM models the goal transitions explicitly, but it can-
not refine the prediction using the observations collected dur-
. ing transit. To show the difference, we labeled the 30 days
Experimental Results of test data with the true goals and computed the prediction
We collected a log of 60 days of GPS data from one per-accuracy using the 2MM and our hierarchical model, which
son using a wearable GPS unit. We use the first 30 days forare learned using the same training data. The average predic-
learning and the other 30 days for the empirical comparison.tion accuracies at the beginning of the trips and after 25%,
Activity model learning The learning was done completely 50%, 75% of the trips are listed in Table 1. At the beginning,
unsupervised without any manual labeling. The structural our model predicts the next goal using first-order transition
learning precisely identifies the subject’s six most common matrices; it performs a little worse than the 2MM. But by
transportation goals and all frequently used bus stops andntegrating real time measurements, our predictions become
parking lots, as shown in Fig. 3 (a). After recognizing the more accurate while 2MM'’s estimates remain the same.
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Figure 4:(a) Probability of the true goal (work place) during an episode from home to work, estimated using the flat and the hierarchical
model. (b,c) Probability of an activity being normal or abnormal, estimated by the concurrent trackers. (b) Normal activity: driving from
home to work. (c) Abnormal activity: missing to get off the bus at time t2.

Detection of user errors Another important feature of our two people will meet. Finally, the approach described here
model is the capability to capture user errors using the par-will be incorporated into a safety monitoring and guidance
allel tracking approach. To demonstrate the performance ofsystem that we are constructing for cognitively-impaired in-
parallel tracking, we did two experiments, with a subject who dividuals who often become lost and have difficulty in using
sometimes drives and sometimes takes the bus from work tgublic transportation safely.

home. In the first experiment, the subject drove from home

to work as usual. In the second experiment, the subject tookAcknowledgments
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