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1. INTRODUCTION
Location awareness is important to many pervasive comput-
ing applications. A fundamental problem in this context is
location estimation, which is the estimation of a person’s lo-
cation from a stream of sensor data. Since no location sensor
takes perfect measurements, it is crucial to represent uncer-
tainty in sensed location information and combine informa-
tion from different types of sensors. Bayesian filter tech-
niques provide a powerful tool to help manage measurement
uncertainty and perform multi-sensor fusion. Their statis-
tical nature makes Bayes filters applicable to arbitrary sen-
sor types and representations of environments. For exam-
ple, Bayes filters provide a sound approach to location es-
timation using GPS data along with street maps or signal
strength information along with topological representations
of indoor environments. Furthermore, they have been ap-
plied with great success to a variety of state estimation prob-
lems including speech recognition, target tracking, vision,
and robotics. In this article, we briefly survey the basics of
Bayes filters and their different implementations. Further-
more, we discuss directions for future research in Bayesian
techniques for location estimation.

2. BAYESIAN FILTERING
Bayes filters probabilistically estimate the state of a dynamic
system from a sequence of noisy sensor observations. In the
most basic form of location estimation, the state of interest is
the location of a person or object, and observations are pro-
vided by sensors either placed in the environment or carried
by the person.

2.1 Belief Update
Bayes filters represent the state at timet by random variables
xt. At each point in time, the uncertainty is represented by
a probability distribution overxt calledbelief Bel(xt). The
key idea of Bayes filters is to sequentially estimate such be-
liefs over the state space conditioned on the information con-
tained in the sensor data. Let us assume that the sensor data
consists of a sequence of time indexed sensor observations
z1:t. The beliefBel(xt) is then defined by the posterior den-
sity over the random variablext conditioned on all sensor
data available at timet:

Bel(xt) = p(xt | z1:t) (1)

Roughly speaking, the belief provides an answer to the ques-
tion “What is the probability that the person is at locationx

if the history of sensor measurements isz1:t?”, for all pos-
sible locationsx. In general, the complexity of computing
such posterior densities grows exponentially over time since
the number of sensor measurements increases over time. To
make the computation tractable, Bayes filters assume the dy-
namic system is Markov,i.e.all relevant information is con-
tained in the current state variablext. The update of the
Bayes filter is performed in two steps:

Prediction: At each time update, the state ispredictedac-
cording to the following update rule.

Bel−(xt) ←−
∫

p(xt | xt−1) Bel(xt−1) dxt−1(2)

Here, the termp(xt | xt−1) describes thesystem dynam-
ics, i.e. how the state of the system changes over time.
In location estimation, this conditional probability is the
motion model – where the person might be at timet,
given that she previously was at locationxt−1. The mo-
tion model strongly depends on the information available
to the estimation process. It can range from predicting the
next position using estimates of a person’s motion veloc-
ity to the prediction of when a person will exit the elevator
using an estimate of the person’s goal.

Correction: Whenever new sensor informationzt is received,
the measurement is used to correct the predicted belief
using the observation.

Bel(xt) ←− αt p(zt | xt) Bel−(xt) (3)

p(zt | xt), theperceptual model, describes the likelihood
of making observationzt given that the person is at loca-
tion xt. For location estimation, the perceptual model is
usually considered a property of a given sensor technol-
ogy. It depends on the types and positions of the sensors
and captures a sensor’s error characteristics. The termαt

in (3) is simply a normalizing constant which ensures that
the posterior over the entire state space sums up to one.

Bel(x0) is initialized with prior knowledge about the lo-
cation of the person, typically uniformly distributed if no
prior knowledge exists. Bayes filters are an abstract concept
in that they only provide a probabilistic framework for re-
cursive state estimation. To implement Bayes filters, one
has to specify the perceptual modelp(zt|xt), the dynam-
icsp(xt|xt−1), and the representation of the beliefBel(xt).
The properties of the different implementations of Bayes fil-
ters strongly differ in the way they represent probability den-
sities over the statext.
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Figure 1: Properties of the most common implementations of Bayes filters for location estimation.

2.2 Belief Representations
This section gives a brief overview of different representa-
tions for the beliefs of Bayes filters (see also Figure 1).

Kalman filtersare the most widely used variant of Bayes fil-
ters [1]. Roughly speaking, these filters approximate beliefs
by unimodal Gaussian distributions, represented by their mean
and variance. While the mean gives the expected location
of the person, the variance represents the uncertainty in the
estimate. Even though Kalman filters make strong assump-
tions about the nature of the sensors and a person’s motion,
they have been applied with great success to various esti-
mation problems. The main advantage of Kalman filters is
their computational efficiency, which comes at the cost of re-
stricted representational power since Kalman filters can only
represent unimodal distributions. Hence, Kalman filters are
best if the uncertainty in a person’s location is not too high.
Typical sensors used for Kalman filter based estimation are
cameras, laser range-finders, and GPS systems.

Multi-hypothesis tracking(MHT) extends Kalman filters to
multi-modal beliefs [1]. MHT represent the belief bymix-
turesof Gaussians where each hypothesis is tracked using
a Kalman filter. The weights of the hypotheses are deter-
mined by how well they predict the sensor measurements.
Due to their ability to represent multi-modal beliefs, MHT
approaches are more widely applicable than the Kalman fil-
ter.

Grid-based approachesovercome the restrictions imposed
on Kalman filters by relying on discrete, piecewise constant
representations of the belief. For indoor location estima-
tion, grid-based filters tessellate the environment into small
patches, typically of size between 10cm and 1m. Each grid
cell contains the belief the person is currently in the cell.
A key advantage of these approaches is that they can rep-
resent arbitrary distributions over the discrete state space.
The disadvantage of grid-based approaches is the compu-
tational complexity, which makes them applicable to low-
dimensional estimation problems only, such as estimating
the position and orientation of a person.

The computational complexity of grid-based methods can be

avoided by non-metric representations of an environment.
For instance,graph structuresare well suited to represent
the motion of people in buildings [5] or even in cities [8].
Each node in the graph corresponds to a location and the
edges describe the connectivity of the environment. The ad-
vantage of topological approaches is their efficiency since
they represent distributions over small, discrete state spaces.
Their disadvantage is the coarseness of the representation
which enables only rough information about a person’s lo-
cation. Topological approaches are typically adequate if the
sensors in the environment provide only very imprecise lo-
cation information.

Particle filtersrepresent beliefs by sets of weighted samples
distributed according to the belief [3]. Particle filters real-
ize Bayes filter updates according to a sampling procedure,
often referred to as sequential importance sampling with re-
sampling. The key advantage of particle filters is their abil-
ity to represent arbitrary probability densities, which makes
them applicable to problems for which Kalman filters are
not well-suited. Compared to grid-based approaches, par-
ticle filters are very efficient since they automatically focus
their resources (particles) on regions in state space with high
probability. However, since the worst-case complexity of
these methods grows exponentially in the dimensions of the
state space, one has to be careful when applying particle
filters to high-dimensional estimation problems. Recently,
Rao-Blackwellised particle filters [2], the combination of
particle filters with Kalman filters, have been applied suc-
cessfully to tracking the locations and identities of multiple
people [10].

2.3 Parameter Learning
The parameters of the perceptual and motion models can be
learned from data using expectation maximization (EM), a
popular approach to parameter estimation from incomplete
data [9]. The perceptual modelp(zt | xt) is typically inde-
pendent of the person and can be learned beforehand. The
motion model, on the other hand, might be different for each
person. Learning the parameters of the motion model allows
the system to adapt to a specific person, thereby increasing
the accuracy and efficiency of the estimation process. For



example, [6] show how to use EM to learn typical motion
patterns of a person in indoor environments using a graph-
based Bayes filter. [8] use the same technique to learn the
navigation patterns of a person through an urban environ-
ment.

3. RESEARCH DIRECTIONS
In this section we briefly discuss directions for future re-
search in Bayesian location estimation.

Adaptive Estimation
Most applications of Bayes filters use the same, fixed rep-
resentation of the state space during the entire estimation
process. However, especially in the context of location es-
timation, this is not appropriate. For example, the location
of a person moving through an urban environment can be
tracked well using multi-hypothesis tracking along with a
GPS sensor and a street-map. However, as soon as the per-
son enters a building, other sensors and representations are
needed. Furthermore, even within the same building, differ-
ent areas might be covered by completely different types of
sensors requiring different representations of the belief state.
A key question is thus when and how to switch between dif-
ferent representations in a statistically sound way.

High-level Representations
The location of a person provides only very limited informa-
tion about the person’s current activity. Richer representa-
tions might include information such as the time of day, the
mode of transportation, the destination of the current trip,
and the purpose of a specific location.Dynamic Bayesian
networks, a variant of Bayes filters, provide a sound way of
describing and reasoning with such structured, hierarchical
information [7]. Some questions remain: What are impor-
tant locations in a person’s life? How can they be described
in a general way and learned from sensor data? How can we
transfer experience gained from one person to another per-
son? Relational probabilistic models[4], which can repre-
sent relations between classes of objects, provide a promis-
ing framework for addressing these problems.

User Errors
In the context of assisting cognitively impaired people, the
detection of when a person seems to be lost is an important
aspect of location estimation.Online model selectionis a
technique that can potentially solve this problem. Model se-
lection aims at identifying the model that is best suited to
explain the observed data [11]. To apply model selection in
the location context, one could generate genericand user-
specific Bayes models of activities. Both models are able
to track a user’s activities, but the specific model is tuned
towards the typical actions of one particular user. The spe-
cific model additionally contains all errors that are typical
for the user. The idea is that as long as the user performs
her usual activities, the tuned model will be much better in
predicting these activities. Surprising actions,i.e. potential
errors, however, are not well predicted by the specific model,
in which case the generic model receives higher probability.
For example, if a person exits the bus every morning at the
same bus stop, then the specific model predicts this action
with very high probability. If the person fails to exit the

bus at the usual stop, then the general model predicts it with
higher probability, thereby triggering the detection of a po-
tential user error. Obviously, such an approach can provide
valuable information to user intervention modules.

4. CONCLUSIONS
We presented Bayes filters as a general framework for loca-
tion estimation, allowing the integration of sensor informa-
tion over time. The application of Bayes filters goes well
beyond location estimation. The generation of hierarchical
models allows the seamless integration of location estima-
tion into user activity estimation. We consider Bayesian
techniques to be an extremely promising tool for location
aware computing.
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